Title: | Bootstrap Test for the Similarity of Dose Response Curves Concerning the Maximum Absolute Deviation |
---|---|
Description: | Provides a bootstrap test which decides whether two dose response curves can be assumed as equal concerning their maximum absolute deviation. A plenty of choices for the model types are available, which can be found in the 'DoseFinding' package, which is used for the fitting of the models. See <doi:10.1080/01621459.2017.1281813> for details. |
Authors: | Kathrin Moellenhoff |
Maintainer: | Kathrin Moellenhoff <[email protected]> |
License: | GPL-3 |
Version: | 1.1 |
Built: | 2025-02-09 03:29:04 UTC |
Source: | https://github.com/cran/TestingSimilarity |
Beta model:
with
and is a fixed dose scaling parameter.
betaMod(d, e, scal)
betaMod(d, e, scal)
d |
real-valued argument to the function (dose variable) |
e |
model parameter |
scal |
fixed dose scaling parameter |
Response value.
Function for testing whether two dose response curves can be assumed as equal concerning the hypotheses
where
denotes the dose range. See https://doi.org/10.1080/01621459.2017.1281813 for details.
bootstrap_test(data1, data2, m1, m2, epsilon, B = 2000, bnds1 = NULL, bnds2 = NULL, plot = FALSE, scal = NULL, off = NULL)
bootstrap_test(data1, data2, m1, m2, epsilon, B = 2000, bnds1 = NULL, bnds2 = NULL, plot = FALSE, scal = NULL, off = NULL)
data1 , data2
|
data frame for each of the two groups containing the variables referenced in dose and resp |
m1 , m2
|
model types. Built-in models are "linlog", "linear", "quadratic", "emax", "exponential", "sigEmax", "betaMod" and "logistic" |
epsilon |
positive argument specifying the hypotheses of the test |
B |
number of bootstrap replications. If missing, default value of B is 5000 |
bnds1 , bnds2
|
bounds for the non-linear model parameters. If not specified, they will be generated automatically |
plot |
if TRUE, a plot of the absolute difference curve of the two estimated models will be given |
scal , off
|
fixed dose scaling/offset parameter for the Beta/ Linear in log model. If not specified, they are 1.2*max(dose) and 1 respectively |
A list containing the p.value, the maximum absolute difference of the models, the estimated model parameters and the number of bootstrap replications. Furthermore plots of the two models are given.
https://doi.org/10.1080/01621459.2017.1281813
data(IBScovars) male<-IBScovars[1:118,] female<-IBScovars[119:369,] bootstrap_test(male,female,"linear","emax",epsilon=0.35,B=300)
data(IBScovars) male<-IBScovars[1:118,] female<-IBScovars[119:369,] bootstrap_test(male,female,"linear","emax",epsilon=0.35,B=300)
Function calculating the absolute difference of two dose response models:
dff(d, beta1, beta2, m1, m2)
dff(d, beta1, beta2, m1, m2)
d |
real-valued argument to the function (dose variable) |
beta1 , beta2
|
model parameters (real vectors) |
m1 , m2
|
model types. Built-in models are "linlog", "linear", "quadratic", "emax", "exponential", "sigEmax", "betaMod" and "logistic" |
Response value for the absolute difference of two models.
Emax model:
emax(d, e)
emax(d, e)
d |
real-valued argument to the function (dose variable) |
e |
model parameter |
Response value.
Exponential model:
exponential(d, e)
exponential(d, e)
d |
real-valued argument to the function (dose variable) |
e |
model parameter |
Response value.
Linear model:
linear(d, e)
linear(d, e)
d |
real-valued argument to the function (dose variable) |
e |
model parameter |
Response value.
Linear in log Model model:
and is a fixed offset parameter.
linlog(d, e, off)
linlog(d, e, off)
d |
real-valued argument to the function (dose variable) |
e |
model parameter |
off |
fixed offset parameter |
Response value.
Logistic model:
logistic(d, e)
logistic(d, e)
d |
real-valued argument to the function (dose variable) |
e |
model parameter |
Response value.
Quadratic model:
quadratic(d, e)
quadratic(d, e)
d |
real-valued argument to the function (dose variable) |
e |
model parameter |
Response value.
Sigmoid Emax Model model:
sigEmax(d, e)
sigEmax(d, e)
d |
real-valued argument to the function (dose variable) |
e |
model parameter |
Response value